Role of the liver-enriched transcription factor DBP in expression of the cytochrome P450 CYP2C6 gene.

Author:

Yano M,Falvey E,Gonzalez F J

Abstract

The CYP2C6 gene becomes maximally transcriptionally activated in livers of postpubertal rats. We examined the role of upstream DNA and liver-specific transcription factors in regulation of this promoter by use of transient transfection of heterologous chloramphenicol acetyltransferase gene constructs and vectors containing cDNAs encoding the liver-enriched transcription factors HNF-1 alpha, C/EBP, and DBP. Only DBP was able to activate the CYP2C6 promoter in HepG2 cells. Transactivation was not observed in one mouse and two human nonhepatic origin cell lines tested. Analysis of various constructs in which CYP2C6 upstream DNA was deleted revealed that DNA between -38 to -103 was involved in DBP-mediated activation. A partially purified preparation of DBP produced a footprint between -43 and -64 bp upstream of the transcription start site. A 32P-labeled double-stranded oligonucleotide, containing sequence information corresponding to -40 to -65, bound to both partially pure DBP and extracts from livers of rats as young as 1 week and as old as 25 weeks of age, as assessed by gel mobility shift analysis. This binding was eliminated by coincubation with excess unlabeled -40/-65 double-stranded oligonucleotide and by an oligonucleotide corresponding to the D site of the rat albumin gene. A gel mobility shift-Western immunoblot analysis revealed that the -40/-65 sequence bound to DBP only in liver nuclear extracts from rats older than 3 weeks; maximal binding was observed by 7 weeks of age, and no binding was detected from 1-week-old rat liver extracts. Interestingly, the DBP-binding regions of both CYP2C6 and albumin bind to C/EBP, but this factor is capable of transactivating only the latter gene. Although the DBP-binding regions in these two genes share no obvious sequence similarities, the CYP2C6 region contains consensus palindromic half sites for DBP-related binding proteins and affinity for recombinant DBP of 17-fold greater than that of the D site of albumin. This difference in affinity is probably responsible for the markedly lower amounts of DBP required for half-maximal activation of the CYP2C6 promoter, as compared with the albumin promoter, in transactivation transfection assays. These data indicate that the CYP2C6 gene may be regulated, at least in part, by DBP, a liver transcription factor produced when rats reach puberty that may also be involved in maintenance of albumin gene transcription.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3