An activation domain of the helix-loop-helix transcription factor E2A shows cell type preference in vivo in microinjected zebra fish embryos

Author:

Argenton F1,Arava Y1,Aronheim A1,Walker M D1

Affiliation:

1. Department of Biology, University of Padua, Italy.

Abstract

The E2A protein is a mammalian transcription factor of the helix-loop-helix family which is implicated in cell-specific gene expression in several cell lineages. Mouse E2A contains two independent transcription activation domains, ADI and ADII; whereas ADI functions effectively in a variety of cultured cell lines, ADII shows preferential activity in pancreatic beta cells. To analyze this preferential activity in an in vivo setting, we adapted a system involving transient gene expression in microinjected zebra fish embryos. Fertilized one- to four-cell embryos were coinjected with an expression plasmid and a reporter plasmid. The expression plasmids used encode the yeast Gal4 DNA-binding domain (DBD) alone, or Gal4 DBD fused to ADI, ADII, or VP16. The reporter plasmid includes the luciferase gene linked to a promoter containing repeats of UASg, the Gal4-binding site. Embryo extracts prepared 24 h after injection showed significant luciferase activity in response to each of the three activation domains. To determine the cell types in which the activation domains were functioning, a reporter plasmid encoding beta-galactosidase and then in situ staining of whole embryos were used. Expression of ADI led to activation in all major groups of cell types of the embryo (skin, sclerotome, myotome, notochord, and nervous system). On the other hand, ADII led to negligible expression in the sclerotome, notochord, and nervous system and much more frequent expression in the myotome. Parallel experiments conducted with transfected mammalian cells have confirmed that ADII shows significant activity in myoblast cells but little or no activity in neuronal precursor cells, consistent with our observations in zebra fish. This transient-expression approach permits rapid in vivo analysis of the properties of transcription activation domains: the data show that ADII functions preferentially in cells of muscle lineage, consistent with the notion that certain activation domains contribute to selective gene activation in vivo.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3