Suppression of insertions in the complex pdxJ operon of Escherichia coli K-12 by lon and other mutations

Author:

Lam H M1,Tancula E1,Dempsey W B1,Winkler M E1

Affiliation:

1. Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.

Abstract

Complementation analyses using minimal recombinant clones showed that all known pdx point mutations, which cause pyridoxine (vitamin B6) or pyridoxal auxotrophy, are located in the pdxA, pdxB, serC, pdxJ, and pdxH genes. Antibiotic enrichments for chromosomal transposon mutants that require pyridoxine (vitamin B6) or pyridoxal led to the isolation of insertions in pdxA, pdxB, and pdxH but not in pdxJ. This observation suggested that pdxJ, like pdxA, pdxB, and serC, might be in a complex operon. To test this hypothesis, we constructed stable insertion mutations in and around pdxJ in plasmids and forced them into the bacterial chromosome. Physiological properties of the resulting insertion mutants were characterized, and the DNA sequence of pdxJ and adjacent regions was determined. These combined approaches led to the following conclusions: (i) pdxJ is the first gene in a two-gene operon that contains a gene, temporarily designated dpj, essential for Escherichia coli growth; (ii) expression of the rnc-era-recO and pdxJ-dpj operons can occur independently, although the pdxJ-dpj promoter may lie within recO; (iii) pdxJ encodes a 26,384-Da polypeptide whose coding region is preceded by a PDX box, and dpj probably encodes a basic, 14,052-Da polypeptide; (iv) mini-Mud insertions in dpj and pdxJ, which are polar on dpj, severely limit E. coli growth; and (v) three classes of suppressors, including mutations in lon and suppressors of lon, that allow faster growth of pdxJ::mini-Mud mutants can be isolated. A model to account for the action of dpj suppressors is presented, and aspects of this genetic analysis are related to the pyridoxal 5'-phosphate biosynthetic pathway.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference49 articles.

1. A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins;Ahnn J.;Proc. Natl. Acad. Sci. USA,1986

2. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette;Arps P. J.;J. Bacteriol.,1987

3. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12;Arps P. J.;J. Bacteriol.,1987

4. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smaith and K. Struhl. 1989. Current protocols in molecular biology. Wiley-Interscience New York.

5. Bachmann B. J. 1987. Linkage map of Escherichia coli K-12 p. 395-411. In F. C. Neidhardt J. L. Ingraham K. B. Low B. Magasanik M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology Washington D.C.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3