Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads

Author:

Lemanceau P,Corberand T,Gardan L,Latour X,Laguerre G,Boeufgras J,Alabouvette C

Abstract

Suppression of soilborne disease by fluorescent pseudomonads may be inconsistent. Inefficient root colonization by the introduced bacteria is often responsible for this inconsistency. To better understand the bacterial traits involved in root colonization, the effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations was assessed. Fluorescent pseudomonads were isolated from an uncultivated soil and from rhizosphere, rhizoplane, and root tissue of flax and tomato cultivated in the same soil. Species and biovars were identified by classical biochemical and physiological tests. The ability of bacterial isolates to assimilate 147 different organic compounds and to show three different enzyme activities was assessed to determine their intraspecific phenotypic diversity. Numerical analysis of these characteristics allowed the clustering of isolates showing a high level (87.8%) of similarity. On the whole, the populations isolated from soil were different from those isolated from plants with respect to their phenotypic characteristics. The difference in bacteria isolated from uncultivated soil and from root tissue of flax was particularly marked. The intensity of plant selection was more strongly expressed with flax than with tomato plants. The selection was, at least partly, plant specific. The use of 10 different substrates allowed us to discriminate between flax and tomato isolates. Pseudomonas fluorescens biovars II, III, and V and Pseudomonas putida biovar A and intermediate type were well distributed among the isolates from soil, rhizosphere, and rhizoplane. Most isolates from root tissue of flax and tomato belonged to P. putida bv. A and to P. fluorescens bv. II, respectively. Phenotypic characterization of bacterial isolates was well correlated with genotypic characterization based on repetitive extragenic palindromic PCR fingerprinting.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference51 articles.

1. Relationship between rhizoplane and rhizosphere bacteria and Verticillium wilt resistance in potato;Azad H. R.;Arch. Microbiol.,1985

2. Pseudomonas fluorescens biovar V: its resolution into distinct groups and the relationships of these groups to other P. fluorescens biovars, to P. putida, and to psycrotrophic pseudomonads associated with food spoilage;Barret E. J.;J. Gen. Microbiol.,1986

3. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79;Bull C. T.;Phytopathology,1991

4. Beneficial plant bacteria;Burr T. J.;Crit. Rev. Plant Sci.,1984

5. Evolution in Pseudomonas fluorescens;Champion A. B.;J. Gen. Microbiol.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3