Quantification and Characterization of Phagocytosis in the Soil Amoeba Acanthamoeba castellanii by Flow Cytometry

Author:

Avery S V,Harwood J L,Lloyd D

Abstract

Phagocytosis in the common grazing soil amoeba Acanthamoeba castellanii was characterized by flow cytometry. Uptake of fluorescently labelled latex microbeads by cells was quantified by appropriate setting of thresholds on light scatter channels and, subsequently, on fluorescence histograms. Confocal laser scanning microscopy was used to verify the effectiveness of sodium azide as a control for distinguishing between cell surface binding and internalization of beads. It was found that binding of beads at the cell surface was complete within 5 min and 80% of cells had beads associated with them after 10 min. However, the total number of phagocytosed beads continued to rise up to 2 h. The prolonged increase in numbers of beads phagocytosed was due to cell populations containing increasing numbers of beads peaking at increasing time intervals from the onset of phagocytosis. Fine adjustment of thresholds on light scatter channels was used to fractionate cells according to cell volume (cell cycle stage). Phagocytotic activity was approximately threefold higher in the largest (oldest) than in the smallest (newly divided) cells of A. castellanii and showed some evidence of periodicity. At no stage in the cell cycle did phagocytosis cease. Binding and phagocytosis of beads were also markedly influenced by culture age and rate of rotary agitation of cell suspensions. Saturation of phagocytosis (per cell) at increasing bead or decreasing cell concentrations occurred at bead/cell ratios exceeding 10:1. This was probably a result of a limitation of the vacuolar uptake system of A. castellanii, as no saturation of bead binding was evident. The advantages of flow cytometry for characterization of phagocytosis at the single-cell level in heterogeneous protozoal populations and the significance of the present results are discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3