Clearance of Human-Pathogenic Viruses from Sludge: Study of Four Stabilization Processes by Real-Time Reverse Transcription-PCR and Cell Culture

Author:

Monpoeho S.1,Maul A.2,Bonnin C.3,Patria L.3,Ranarijaona S.1,Billaudel S.1,Ferré V.1

Affiliation:

1. Laboratoire de Virologie, UPRES 1156, Centre Hospitalier Universitaire, Nantes

2. Department of Statistics and Data Processing, Institut Universitaire de Technologie, Metz

3. Anjou Recherche Vivendi Water, Paris, France

Abstract

ABSTRACT Sludges derived from wastewater treatment are foul-smelling, biologically unstable substances. As well as containing numerous pathogenic microorganisms, they also consist of organic matter that can be used as agricultural fertilizer. Legislation nevertheless requires sludges to be virologically tested prior to spreading by the counting of infectious enterovirus particles. This method, based on culture of enterovirus on BGM cells, is lengthy and not very sensitive. The aim of this study was to propose an alternative method of genome quantification for all enteroviruses that is applicable to verifying the elimination of viruses in complex samples such as sludges. Our complete protocol was compared to the official method, consisting of enterovirus enumeration with the most probable number of cythopathic unit (MPNCU) assay through the study of four stabilization procedures: liming, composting, heat treatment, and mesophile anaerobic digestion. Enterovirus quantities at the start of the stabilization procedures were between 37 and 288 MPNCU/g on the one scale and between 4 and 5 log genome copies/g on the other. It was shown that all procedures except mesophile anaerobic digestion were highly effective in the elimination of enterovirus particles and genomes in wastewater sludges. Reduction of viruses by mesophile anaerobic digestion was by only 1 log (infectious particles and genomes). In conclusion, stabilization processes can indeed be checked by virological quality control of sludges with gene amplification. However, the infectivity of genomes needs to be confirmed with cell culture or a correlation model if the virological risk inherent in the agricultural use of such sludges is to be fully addressed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3