Phenotypic and Molecular Typing of Salmonella Strains Reveals Different Contamination Sources in Two Commercial Pig Slaughterhouses

Author:

Botteldoorn Nadine1,Herman Lieve1,Rijpens Nancy1,Heyndrickx Marc1

Affiliation:

1. Department for Animal Product Quality and Transformation Technology, Center for Agricultural Research—Ghent, Melle, Belgium

Abstract

ABSTRACT This study aimed to define the origin of Salmonella contamination on swine carcasses and the distribution of Salmonella serotypes in two commercial slaughterhouses during normal activity. Salmonellae were isolated from carcasses, from colons and mesenteric lymph nodes of individual pigs, and from the slaughterhouse environment. All strains were serotyped; Salmonella enterica serotype Typhimurium and Salmonella enterica serotype Derby isolates were additionally typed beyond the serotype level by pulsed-field gel electrophoresis (PFGE) and antibiotic resistance profiling (ARP); and a subset of 31 serotype Typhimurium strains were additionally phage typed. PFGE and ARP had the same discriminative possibility. Phage typing in combination with PFGE could give extra information for some strains. In one slaughterhouse, 21% of the carcasses were contaminated, reflecting a correlation with the delivery of infected pigs. Carcass contamination did not result only from infection of the corresponding pig; only 25% of the positive carcasses were contaminated with the same serotype or genotype found in the corresponding feces or mesenteric lymph nodes. In the other slaughterhouse, 70% of the carcasses were contaminated, and only in 4% was the same genotype or serotype detected as in the feces of the corresponding pigs. The other positive carcasses in both slaughterhouses were contaminated by genotypes present in the feces or lymph nodes of pigs slaughtered earlier that day or from dispersed sources in the environment. In slaughterhouses, complex contamination cycles may be present, resulting in the isolation of many different genotypes circulating in the environment due to the supply of positive animals and in the contamination of carcasses, probably through aerosols.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3