Quantitative Contributions of Target Alteration and Decreased Drug Accumulation to Pseudomonas aeruginosa Fluoroquinolone Resistance

Author:

Bruchmann Sebastian,Dötsch Andreas,Nouri Bianka,Chaberny Iris F.,Häussler Susanne

Abstract

ABSTRACTQuinolone antibiotics constitute a clinically successful and widely used class of broad-spectrum antibiotics; however, the emergence and spread of resistance increasingly limits the use of fluoroquinolones in the treatment and management of microbial disease. In this study, we evaluated the quantitative contributions of quinolone target alteration and efflux pump expression to fluoroquinolone resistance inPseudomonas aeruginosa. We generated isogenic mutations in hot spots of the quinolone resistance-determining regions (QRDRs) ofgyrA,gyrB, andparCand inactivated the efflux regulator genes so as to overexpress the corresponding multidrug resistance (MDR) efflux pumps. We then introduced the respective mutations into the reference strain PA14 singly and in various combinations. Whereas the combined inactivation of two efflux regulator-encoding genes did not lead to resistance levels higher than those obtained by inactivation of only one efflux regulator-encoding gene, the combination of mutations leading to increased efflux and target alteration clearly exhibited an additive effect. This combination of target alteration and overexpression of efflux pumps was commonly observed in clinicalP. aeruginosaisolates; however, these two mechanisms were frequently found not to be sufficient to explain the level of fluoroquinolone resistance. Our results suggest that there are additional mechanisms, independent of the expression of the MexAB-OprM, MexCD-OprJ, MexEF-OprN, and/or MexXY-OprM efflux pump, that increase ciprofloxacin resistance in isolates with mutations in the QRDRs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3