Author:
Graves D C,McNabb S J,Worley M A,Downs T D,Ivey M H
Abstract
The major Pneumocystis carinii antigens inducing antibody responses in infected hosts were identified by Western immunoblotting techniques. The biochemical nature of these antigens was also elucidated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by protein staining revealed a major component with a molecular weight (MW) of greater than 205,000. This major component disappeared and a new major protein staining component of approximately 110,000 to 116,000 MW appeared when electrophoresis was done in the presence of beta-mercaptoethanol. Periodic acid-Schiff staining revealed that this major component contains carbohydrate moieties. A major component in the 55,000- to 60,000-MW region was visible with periodic acid-Schiff stain, but not with a protein stain, after electrophoresis in the presence of beta-mercaptoethanol. The majority of sera tested from humans with diagnosed pneumocystosis and from rats allowed to recover from steroid-induced pneumocystosis reacted strongly with 110,000- to 116,000-, and 55,000- to 60,000-MW components. These sera often, but not always, detected antigens with MWs of approximately 170,000, 125,000, and 30,000 to 32,000. The data suggest that the antigenic composition of P. carinii is relatively complex and that rat and human P. carinii probably share antigenic determinants. Competitive studies between infection-derived human and rat antisera for the major rat P. carinii components revealed competition; rat antisera appeared to recognize a greater range of antigenic epitopes than did human antisera. Protease treatment of the antigenic components that had been immobilized on nitrocellulose paper destroyed their antigenic reactivity with rat antibody. Treatment with sodium periodate decreased reactivity of this 110,000- to 116,000-MW component and completely destroyed the reactivity of the 55,000- to 60,000-MW component with rat antibody.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献