Affiliation:
1. Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Abstract
Peck, H. D., Jr.
(Oak Ridge National Laboratory, Oak Ridge, Tenn.). Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J. Bacteriol.
82:
933–939. 1961.—Two pathways for the reduction of sulfate to sulfite in bacteria have been previously described. The substrate for sulfate reduction by extracts of yeast is 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and, in contrast, the substrate for sulfate reduction in extracts of
Desulfovibrio desulfuricans
is adenosine-5′-phosphosulfate (APS). The enzymes catalyzing these reductions have been termed PAPS-reductase and APS-reductase, respectively. Since yeasts are “assimilatory sulfate reducers”, i.e., reduce only enough sulfate to satisfy nutritional requirements for sulfur, and
D. desulfuricans
is a “dissimilatory sulfate reducer”, i.e., utilizes sulfate as its terminal electron acceptor in anaerobic respiration, the pathway of sulfate reduction was determined in 25 microorganisms to ascertain whether there is a correlation between the pathway of sulfate reduction and the physiological role of sulfate in the metabolism of bacteria. Assimilatory sulfate reducers reduced sulfate in the form of PAPS, and, with one exception, APS-reductase was found only in dissimilatory sulfate reducers. APS-reductase was also found in the Thiobacilli in high specific activity and is involved in the oxidation of reduced sulfur compounds to sulfate.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献