Mini-F plasmid mutants able to replicate in the absence of sigma 32: mutations in the repE coding region producing hyperactive initiator protein

Author:

Kawasaki Y1,Wada C1,Yura T1

Affiliation:

1. Institute for Virus Research, Kyoto University, Japan.

Abstract

Mini-F plasmids cannot replicate in Escherichia coli strains (delta rpoH) lacking sigma 32, presumably because transcription of the repE gene encoding the replication initiator protein (RepE protein) depends mostly on RNA polymerase containing sigma 32. We have isolated and characterized mini-F mutants able to replicate in delta rpoH cells. Contrary to the initial expectation, five mutants with mutations in the repE coding region that produce altered RepE proteins were obtained. The mutations caused replacement of a single amino acid: the 92nd glutamic acid was replaced by lysine (repE10, repE16, and repE25) or glycine (repE22) or the 109th glutamic acid was replaced by lysine (repE26). These plasmids overproduced RepE protein and exhibited very high copy numbers. Two major activities of mutated RepE proteins have been determined in vivo; the autogenous repressor activity was significantly reduced, whereas the initiator activity was much enhanced in all mutants. These results indicate the importance of a small central region of RepE protein for both initiator and repressor activities. Thus the decreased repE transcription in delta rpoH cells can be compensated for by an increased initiator activity and a decreased repressor activity of RepE, resulting in the increased synthesis of hyperactive RepE protein.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3