Pseudomonas syringae pv. phaseolicola genomic clones harboring heterologous DNA sequences suppress the same phaseolotoxin-deficient mutants

Author:

Kamdar H V1,Rowley K B1,Clements D1,Patil S S1

Affiliation:

1. Department of Plant Pathology, University of Hawaii, Honolulu 96822.

Abstract

Cosmid cloning and mutagenesis were used to identify genes involved in the production of phaseolotoxin, the chlorosis-inducing phytotoxin of Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight of bean (Phaseolus vulgaris L.). Eight stable clones were isolated from a genomic cosmid library by en masse mating to 10 ethyl methanesulfonate (EMS)-induced Tox- mutants. In cross-matings, each suppressed all 10 mutants as well as an additional 70 EMS-induced Tox- mutants (and one UV-induced Tox- mutant). On the basis of restriction endonuclease analysis and hybridization studies, the clones were grouped into three classes. Clones in a particular class shared common fragments, whereas clones in different classes did not. Clones from class I (but not classes II and III) also suppressed Tn5-induced Tox- mutants. Interposon mutagenesis and marker exchange of a representative clone from class III into the wild-type genome did not alter its Tox+ phenotype, indicating that this clone does not harbor structural or regulatory genes involved in phaseolotoxin production. We suggest that the genome of P. syringae pv. phaseolicola contains a "hot spot" in one of the functions involved in toxin production which is affected by EMS and UV and that heterologous clones are able to suppress the Tox- phenotype because their inserts encode products that are able to substitute for the product of the mutated gene. Alternatively, the inserts may contain sequences which titrate a repressor protein. In either case, the data suggest that suppression of EMS- and UV-induced mutants occurs when heterologous clones are present in multiple copies.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3