Affiliation:
1. Centro de Neurociências e Biologia Celular, Departamento de Zoologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal
2. Departamento de Bioquímica, Universidade de Coimbra, 3001-401 Coimbra, Portugal
Abstract
ABSTRACT
Trehalose supports the growth of
Thermus thermophilus
strain HB27, but the absence of obvious genes for the hydrolysis of this disaccharide in the genome led us to search for enzymes for such a purpose. We expressed a putative α-glucosidase gene (TTC0107), characterized the recombinant enzyme, and found that the preferred substrate was α,α-1,1-trehalose, a new feature among α-glucosidases. The enzyme could also hydrolyze the disaccharides kojibiose and sucrose (α-1,2 linkage), nigerose and turanose (α-1,3), leucrose (α-1,5), isomaltose and palatinose (α-1,6), and maltose (α-1,4) to a lesser extent. Trehalose was not, however, a substrate for the highly homologous α-glucosidase from
T. thermophilus
strain GK24. The reciprocal replacement of a peptide containing eight amino acids in the α-glucosidases from strains HB27 (LGEHNLPP) and GK24 (EPTAYHTL) reduced the ability of the former to hydrolyze trehalose and provided trehalose-hydrolytic activity to the latter, showing that LGEHNLPP is necessary for trehalose recognition. Furthermore, disruption of the α-glucosidase gene significantly affected the growth of
T. thermophilus
HB27 in minimal medium supplemented with trehalose, isomaltose, sucrose, or palatinose, to a lesser extent with maltose, but not with cellobiose (not a substrate for the α-glucosidase), indicating that the α-glucosidase is important for the assimilation of those four disaccharides but that it is also implicated in maltose catabolism.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology