Salt, Alone or in Combination with Sucrose, Can Improve the Survival of Escherichia coli O157 (SERL 2) in Model Acidic Sauces

Author:

Chapman B.1,Jensen N.1,Ross T.2,Cole M.1

Affiliation:

1. Australian Food Safety Centre of Excellence, Food Science Australia, P.O. Box 52, North Ryde 1670, New South Wales, Australia

2. University of Tasmania, Private Bag 54, Hobart 7001, Tasmania, Australia

Abstract

ABSTRACT The commercial production of microbiologically safe and stable sauces containing acetic acid is guided by the Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Économique Européenne's (CIMSCEE) code. The CIMSCEE safety value is calculated using a linear regression equation combining weighted contributions of pH and aqueous-phase concentrations of undissociated acetic acid, NaCl, and sugars. By implication, the CIMSCEE safety equation predicts that increasing concentrations of hurdles will always increase inactivation of the target pathogen. In this study, the time to achieve a 3-log 10 reduction of an acid-resistant, acid-adapted, Shiga toxin-producing Escherichia coli (STEC) O157 isolate was determined experimentally for 81 formulations at various pHs and acetic acid, NaCl, and sucrose concentrations in a broth model. The combinations were intended to simulate the aqueous phase of acidic sauces and dressings. Experimental data were fitted to the log logistic model to estimate the time to 3-log 10 reduction ( t 3D ). Comparison of fitted t 3D estimates with CIMSCEE values showed agreement in predicting safety (as defined by CIMSCEE) for the majority of formulations. However, CIMSCEE safety predictions were “fail dangerous” for 13 of 81 formulations. Among these formulations and others, the observed E. coli t 3D initially increased and then decreased with increasing osmolalities (NaCl and sucrose). Relative protection increased with exposure time where the protective effect of NaCl predominated. While commercial acidic sauces are not considered high-risk vehicles for STEC, interactions among hurdles that decrease their combined effectiveness are deserving of further investigation because they may reveal mechanisms of broader relevance in the inactivation of pathogens in foods.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3