The Initial 96 Hours of Invasive Pulmonary Aspergillosis: Histopathology, Comparative Kinetics of Galactomannan and (1→3)-β- d -Glucan, and Consequences of Delayed Antifungal Therapy

Author:

Hope William W.12,Petraitis Vidmantas234,Petraitiene Ruta234,Aghamolla Tamarra3,Bacher John5,Walsh Thomas J.24

Affiliation:

1. The University of Manchester, Manchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, United Kingdom

2. Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland

3. Laboratory Animal Sciences Program, SAIC-Frederick, Inc., Frederick, Maryland

4. Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College of Cornell University, New York City, New York

5. Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland

Abstract

ABSTRACT Acute invasive pulmonary aspergillosis is a rapidly progressive and frequently lethal infection. Relatively little is known about early events in the pathogenesis and relationship between the cell wall biomarkers galactomannan and (1→3)-β- d -glucan. The consequences of delayed antifungal therapy are also poorly defined. A persistently neutropenic rabbit model of invasive pulmonary aspergillosis was used to describe the histopathology of early invasive pulmonary aspergillosis and the kinetics of galactomannan and (1→3)-β- d -glucan. The time course of both molecules was mathematically modeled by using a population methodology, and Monte Carlo simulations were performed. The effect of progressive delay in the administration of amphotericin B deoxycholate 1 mg/kg at 24, 48, 72, and 96 h postinoculation on fungal burden, lung weight, pulmonary infarct score, and survival was determined. Histopathology showed phagocytosis of conidia by pulmonary alveolar macrophages at 4 h postinoculation. At 12 to 24 h, there was a progressive focal inflammatory response with conidial germination and hyphal extension. Subsequently, hyphae invaded into the contiguous lung. Galactomannan and (1→3)-β- d -glucan had similar trajectories, and both exhibited considerable interindividual variability, which was reflected in Monte Carlo simulations. Concentrations of both molecules began to rise <24 h postinoculation before pulmonary hemorrhagic infarction was present. Delays of 72 and 96 h in the administration of amphotericin B resulted in fungal burdens and lung weights that were indistinguishable from those of controls, respectively. Galactomannan and (1→3)-β- d -glucan have similar kinetics and are comparable biomarkers of early invasive pulmonary aspergillosis. Antifungal treatment at ≥48 h postinoculation is associated with suboptimal therapeutic outcomes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3