The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells

Author:

Hondalus M K1,Diamond M S1,Rosenthal L A1,Springer T A1,Mosser D M1

Affiliation:

1. Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.

Abstract

Rhodococcus equi is a facultative intracellular bacterium of macrophages that causes disease in immunocompromised individuals, particularly those with AIDS. In this report, we demonstrate that R. equi binding to mammalian cells requires complement and is mediated primarily by the leukocyte complement receptor, Mac-1. Bacteria bind to macrophages poorly unless exogenous complement is added to the incubation medium. The addition of fresh nonimmune serum, which contains no detectable antibodies to R. equi, greatly enhances bacterial binding to macrophages, whereas heat inactivation of this serum or immunological depletion of C3 from the serum reduces binding to levels only slightly higher than those of binding under serum-free conditions. Human serum depleted of C2 or C4 is fully opsonic, indicating that complement activation and fixation occur by the alternative pathway. The serum-dependent binding of rhodococci to macrophages is mediated primarily by the macrophage complement receptor type 3, Mac-1 (CD11b/CD18). Bacteria do not bind to fibroblastoid or epithelial cells that lack this receptor. Most of the bacterial binding to macrophages is inhibited by a monoclonal antibody to Mac-1 but is unaffected by a monoclonal antibody to complement receptor type 1. Furthermore, opsonized, but not unopsonized, bacteria bind to purified Mac-1 immobilized on plastic. In addition, in the presence of opsonic complement, rhodococci bind efficiently to fibroblastoid cells transfected with cloned Mac-1 but relatively poorly to cells transfected with the complement receptor type 1. Hence, R. equi fixes complement by activating the alternative complement pathway, and this fixation is a requirement for bacterial adhesion and invasion. Furthermore, complement fixation defines rhodococcal host cell tropism, since R. equi binds specifically and exclusively to cells expressing Mac-1.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3