The RFX Protein RfxA Is an Essential Regulator of Growth and Morphogenesis in Penicillium marneffei

Author:

Bugeja Hayley E.1,Hynes Michael J.1,Andrianopoulos Alex1

Affiliation:

1. Department of Genetics, University of Melbourne, Victoria 3010, Australia

Abstract

ABSTRACT Fungi are small eukaryotes capable of undergoing multiple complex developmental programs. The opportunistic human pathogen Penicillium marneffei is a dimorphic fungus, displaying vegetative (proliferative) multicellular hyphal growth at 25°C and unicellular yeast growth at 37°C. P. marneffei also undergoes asexual development into differentiated multicellular conidiophores bearing uninucleate spores. These morphogenetic processes require regulated changes in cell polarity establishment, cell cycle dynamics, and nuclear migration. The RFX (regulatory factor X) proteins are a family of transcriptional regulators in eukaryotes. We sought to determine how the sole P. marneffei RFX protein, RfxA, contributes to the regulation of morphogenesis. Attempts to generate a haploid rfxA deletion strain were unsuccessful, but we did isolate an rfxA + / rfxA Δ heterozygous diploid strain. The role of RfxA was assessed using conditional overexpression, RNA interference (RNAi), and the production of dominant interfering alleles. Reduced RfxA function resulted in defective mitoses during growth at 25°C and 37°C. This was also observed for the heterozygous diploid strain during growth at 37°C. In contrast, overexpression of rfxA caused growth arrest during conidial germination. The data show that rfxA must be precisely regulated for appropriate nuclear division and to maintain genome integrity. Perturbations in rfxA expression also caused defects in cellular proliferation and differentiation. The data suggest a role for RfxA in linking cellular division with morphogenesis, particularly during conidiation and yeast growth, where the uninucleate state of these cell types necessitates coupling of nuclear and cellular division tighter than that observed during multinucleate hyphal growth.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3