Novel Molecular Variants of Allele I of the Escherichia coli P Fimbrial Adhesin Gene papG

Author:

Johnson James R.1,Stell Adam L.1,Kaster Nicholas1,Fasching Claudine1,O'Bryan Timothy T.1

Affiliation:

1. Veterans Affairs Medical Center and Department of Medicine, University of Minnesota, Minneapolis, Minnesota

Abstract

ABSTRACT P fimbriae of extraintestinal pathogenic Escherichia coli mediate digalactoside-specific adherence via the tip adhesin molecule PapG, which occurs in three known variants (I to III), which are encoded by the corresponding three alleles of papG . In the present study, newly discovered variants of papG allele I and the respective wild-type source strains were characterized. One of the new papG allele I variants conferred a unique agglutination phenotype that combined the phenotypes associated with papG alleles I, II, and III. Comparative hydrophilicity analysis of predicted PapG peptides revealed regions that might explain the observed phenotypic similarities and differences between the PapG variants. The new papG allele I variants occurred either as the sole papG allele or together with both papG alleles II and III, rather than with only papG allele III, as in archetypal strains J96 and CP9. They also occurred in the absence of the usual F13 papA allele. One of the new papG allele I variants occurred in a serogroup O6 strain that, according to random amplified polymorphic DNA analysis, was phylogenetically distant from the “J96-like” clonal group of E. coli O4:H5, which includes all previously identified examples of papG allele I. Cluster analysis of nucleotide and predicted peptide sequences suggested that papG allele I represents the earliest evolutionary branch from a common papG ancestor. These results demonstrate unexpected diversity within papG allele I and, together with previous findings, suggest that the J96-like clonal group of E. coli O4:H5 may represent the original source of papG within the species.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3