Comparison of the exoS Gene and Protein Expression in Soil and Clinical Isolates of Pseudomonas aeruginosa

Author:

Ferguson Michael W.1,Maxwell Jill A.1,Vincent Timothy S.2,da Silva Jack3,Olson Joan C.2

Affiliation:

1. Biology Department, Coastal Carolina University, Conway, South Carolina 29528-60541;

2. Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 294252; and

3. Department of Biology, East Carolina University, Greenville, North Carolina 278583

Abstract

ABSTRACT Exoenzyme S (ExoS) is translocated into eukaryotic cells by the type III secretory process and has been hypothesized to function in conjunction with other virulence factors in the pathogenesis of Pseudomonas aeruginosa . To gain further understanding of how ExoS might contribute to P. aeruginosa survival and virulence, ExoS expression and the structural gene sequence were determined in P. aeruginosa soil isolates and compared with ExoS of clinical isolates. Significantly higher levels of ExoS ADP-ribosyltransferase (ADPRT) activity were detected in culture supernatants of soil isolates compared to those of clinical isolates. The higher levels of ADPRT activity of soil isolates reflected both the increased production of ExoS and the production of ExoS having a higher specific activity. ExoS structural gene sequence comparisons found the gene to be highly conserved among soil and clinical isolates, with the greatest number of nonsynonymous substitutions occurring within the region of ExoS encoding GAP function. The lack of amino acid changes in the ADPRT region in association with a higher specific activity implies that other factors produced by P. aeruginosa or residues outside the ADPRT region are affecting ExoS ADPRT activity. The data are consistent with ExoS being integral to P. aeruginosa survival in the soil and suggest that, in the transition of P. aeruginosa from the soil to certain clinical settings, the loss of ExoS expression is favored.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3