Immunochemical and Biological Characterization of Three Capsular Polysaccharides from a Single Bacteroides fragilis Strain

Author:

Kalka-Moll Wiltrud M.1,Wang Ying1,Comstock L. E.1,Gonzalez Sylvia E.1,Tzianabos Arthur O.1,Kasper Dennis L.12

Affiliation:

1. Channing Laboratory, Department of Medicine, Brigham and Women's Hospital,1 and

2. Department of Microbiology and Molecular Genetics,2 Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT Although Bacteroides fragilis accounts for only 0.5% of the normal human colonic flora, it is the anaerobic species most frequently isolated from intra-abdominal and other infections with an intestinal source. The capsular polysaccharides of B. fragilis are part of a complex of surface polysaccharides and are the organism's most important virulence factors in the formation of intra-abdominal abscesses. Two capsular polysaccharides from strain NCTC 9343, PS A1 and PS B1, have been characterized structurally. Their most striking feature is a zwitterionic charge motif consisting of both positively and negatively charged substituent groups on each repeating unit. This zwitterionic motif is essential for abscess formation. In this study, we sought to elucidate structural features of the capsular polysaccharide complex of a commonly studied B. fragilis strain, 638R, that is distinct from strain 9343. We sought a more general picture of the species to establish basic structure-activity and structure-biosynthesis relationships among abscess-inducing polysaccharides. Strain 638R was found to have a capsular polysaccharide complex from which three distinct carbohydrates could be isolated by a complex purification procedure. Compositional and immunochemical studies demonstrated a zwitterionic charge motif common to all of the capsular polysaccharides that correlated with their ability to induce experimental intra-abdominal abscesses. Of interest is the range of net charges of the isolated polysaccharides—from positive (PS C2) to balanced (PS A2) to negative (PS 3). Relationships among structural components of the zwitterionic polysaccharides and their molecular biosynthesis loci were identified.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3