Contribution of the C-8 substituent of DU-6859a, a new potent fluoroquinolone, to its activity against DNA gyrase mutants of Pseudomonas aeruginosa

Author:

Kitamura A1,Hoshino K1,Kimura Y1,Hayakawa I1,Sato K1

Affiliation:

1. Exploratory Research Laboratories I, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan.

Abstract

Inhibitory effects of five quinolones against DNA gyrases purified from four quinolone-resistant clinical isolates of Pseudomonas aeruginosa and the quinolone-susceptible strain PAO1 were examined. All of the quinolone-resistant strains tested were found to be DNA gyrase mutants. The 50% inhibitory concentrations (IC50s) of the quinolones for these DNA gyrases roughly correlated with their MICs. Interestingly, gyrase inhibition by DU-6859a was found to be significantly less affected by these mutations that inhibition by other currently available quinolones. To assess the enhanced activity shown by DU-6859a, the effects of quinolones with altered substituents at the N-1, C-7, and C-8 positions of the quinolone ring of DU-6859a were tested. Measurement of MICs for four DNA gyrase mutants and IC50s for their purified DNA gyrases showed that removal of the C-8 chlorine of DU-6859a significantly increased MICs and IC50s for DNA gyrase mutants. However, no deleterious effects were observed when either the fluorine on the cyclopropyl substituent at the N-1 position or the cyclopropyl ring at the C-7 substituent was removed. Moreover, removal of the C-8 chlorine also increased the MIC for 19 of 20 quinolone-resistant clinical isolates. Our results led to the conclusion that DU-6859a is much more active against quinolone-resistant clinical isolates of P. aeruginosa than other currently available quinolones, probably because of its strong inhibitory effects against mutant quinolone-resistant DNA gyrases, and that the C-8 chlorine is necessary for these potent effects.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3