Staphylococcus aureus Strain Newman D2C Contains Mutations in Major Regulatory Pathways That Cripple Its Pathogenesis

Author:

Sause William E.1,Copin Richard1,O'Malley Aidan1,Chan Rita1,Morrow Brian J.2,Buckley Peter T.3,Fernandez Jeffrey3,Lynch A. Simon3,Shopsin Bo14,Torres Victor J.1

Affiliation:

1. Department of Microbiology, New York University School of Medicine, New York, New York, USA

2. Janssen Research and Development, Raritan, New Jersey, USA

3. Janssen Research and Development, Spring House, Pennsylvania, USA

4. Department of Medicine, Division of Infectious Diseases, NYU School of Medicine, New York, New York, USA

Abstract

ABSTRACT Staphylococcus aureus is a major human pathogen that imposes a great burden on the health care system. In the development of antistaphylococcal modalities intended to reduce the burden of staphylococcal disease, it is imperative to select appropriate models of S. aureus strains when assessing the efficacy of novel agents. Here, using whole-genome sequencing, we reveal that the commonly used strain Newman D2C from the American Type Culture Collection (ATCC) contains mutations that render the strain essentially avirulent. Importantly, Newman D2C is often inaccurately referred to as simply “Newman” in many publications, leading investigators to believe it is the well-described pathogenic strain Newman. This study reveals that Newman D2C carries a stop mutation in the open reading frame of the virulence gene regulator, agrA . In addition, Newman D2C carries a single-nucleotide polymorphism (SNP) in the global virulence regulator gene saeR that results in loss of protein function. This loss of function is highlighted by complementation studies, where the saeR allele from Newman D2C is incapable of restoring functionality to an saeR -null mutant. Additional functional assessment was achieved through the use of biochemical assays for protein secretion, ex vivo intoxications of human immune cells, and in vivo infections. Altogether, our study highlights the importance of judiciously screening for genetic changes in model S. aureus strains when assessing pathogenesis or the efficacy of novel agents. Moreover, we have identified a novel SNP in the virulence regulator gene saeR that directly affects the ability of the protein product to activate S. aureus virulence pathways. IMPORTANCE Staphylococcus aureus is a human pathogen that imposes an enormous burden on health care systems worldwide. This bacterium is capable of evoking a multitude of disease states that can range from self-limiting skin infections to life-threatening bacteremia. To combat these infections, numerous investigations are under way to develop therapeutics capable of thwarting the deadly effects of the bacterium. To generate successful treatments, it is of paramount importance that investigators use suitable models for examining the efficacy of the drugs under study. Here, we demonstrate that a strain of S. aureus commonly used for drug efficacy studies is severely mutated and displays markedly reduced pathogenicity. As such, the organism is an inappropriate model for disease studies.

Funder

National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of Allergy and Infectious Diseases

Burroughs Wellcome Fund

Janssen Biotech

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3