Molecular Dissection of a Borrelia burgdorferi In Vivo Essential Purine Transport System

Author:

Jain Sunny1,Showman Adrienne C.1,Jewett Mollie W.1

Affiliation:

1. Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, USA

Abstract

ABSTRACT The Lyme disease spirochete Borrelia burgdorferi is dependent on purine salvage from the host environment for survival. The genes bbb22 and bbb23 encode purine permeases that are essential for B. burgdorferi mouse infectivity. We now demonstrate the unique contributions of each of these genes to purine transport and murine infection. The affinities of spirochetes carrying bbb22 alone for hypoxanthine and adenine were similar to those of spirochetes carrying both genes. Spirochetes carrying bbb22 alone were able to achieve wild-type levels of adenine saturation but not hypoxanthine saturation, suggesting that maximal hypoxanthine uptake requires the presence of bbb23 . Moreover, the purine transport activity conferred by bbb22 was dependent on an additional distal transcriptional start site located within the bbb23 open reading frame. The initial rates of uptake of hypoxanthine and adenine by spirochetes carrying bbb23 alone were below the level of detection. However, these spirochetes demonstrated a measurable increase in hypoxanthine uptake over a 30-min time course. Our findings indicate that bbb22 -dependent adenine transport is essential for B. burgdorferi survival in mice. The bbb23 gene was dispensable for B. burgdorferi mouse infectivity, yet its presence was required along with that of bbb22 for B. burgdorferi to achieve maximal spirochete loads in infected mouse tissues. These data demonstrate that both genes, bbb22 and bbb23 , are critical for B. burgdorferi to achieve wild-type infection of mice and that the differences in the capabilities of the two transporters may reflect distinct purine salvage needs that the spirochete encounters throughout its natural infectious cycle.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3