Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1.

Author:

Mizuno K,Gonzalez F J,Kimura S

Abstract

A cDNA clone encoding a thyroid-specific enhancer-binding protein (T/EBP) was isolated from a rat thyroid-derived FRTL-5 cell lambda gt 11 expression library, using a double-stranded oligonucleotide probe. This oligonucleotide was previously demonstrated to have the strongest binding affinity among three cis-acting DNA elements within the thyroid-specific enhancer region located 5.5 kbp upstream of the human thyroid peroxidase gene transcription start site. Nucleotide and deduced amino acid sequences of the cDNA revealed that T/EBP is identical to the previously reported thyroid-specific transcription factor 1 (TTF-1), which binds to the promoter of the rat thyroglobulin gene and controls its thyroid-specific expression. Expression of the T/EBP cDNA under control of the human cytomegalovirus major immediate-early gene promoter conferred thyroid-specific enhancer activity of as high as 26-fold to nonpermissive human hepatoma HepG2 cells when cotransfected with a vector containing 6.3 kbp of upstream sequence of the human thyroid peroxidase gene connected to a luciferase reporter gene. T/EBP was further expressed in HepG2 cells by using the vaccinia virus expression system. The expressed protein was partially purified by using sequence-specific affinity column chromatography and was further shown, by gel mobility shift experiments, to specifically bind to the enhancer-derived double-stranded oligonucleotide. These results clearly indicate that the binding of T/EBP (TTF-1) to the specific cis-acting enhancer element is largely responsible for thyroid-specific enhancer activity.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3