Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE

Author:

Wolfe R L1,Stewart M H1,Liang S1,McGuire M J1

Affiliation:

1. Metropolitan Water District of Southern California, La Verne 91750.

Abstract

PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages (0.5, 1.0, 2.0, and 4.0 mg/liter), four hydrogen peroxide/ozone (H2O2/O3) weight ratios (0, 0.3, 0.5, and 0.8), and four contact times (4, 5, 12, and 16 min) in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E. coli and MS2 was inactivated at an applied ozone dosage of 2.0 mg/liter (and a 4-min contact time) when the H2O2/O3 ratio was less than or equal to 0.5. Comparative disinfection experiments indicated that free chlorine was the most potent bactericidal agent, followed (in descending order of effectiveness) by ozone, PEROXONE, and chloramines. These results indicate that the PEROXONE process must be optimized for each source water to achieve microbicidal effectiveness.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference47 articles.

1. Adams M. H. 1959. Bacteriophages. Interscience Publishers Inc. New York.

2. Advanced oxidation processes for treating groundwater with PCE and TCE: pilot scale evaluations;Aieta E. M.;J. Am. Water Works Assoc.,1988

3. American Public Health Association. 1985. Standard methods for the examination of water and wastewater 16th ed. American Public Health Association Washington D.C.

4. Determination of ozone in water by the indigo method; a submitted standard method. Ozone Sci;Bader A.;Eng.,1982

5. The combined effect of hydrogen peroxide and ultraviolet irradiation on bacterial spores;Bayliss C. E.;J. Appl. Bacteriol.,1979

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3