The Yersinia enterocolitica pYV Virulence Plasmid Contains Multiple Intrinsic DNA Bends Which Melt at 37°C

Author:

Rohde John R.1,Luan Xing-she1,Rohde Harold1,Fox James M.1,Minnich S. A.1

Affiliation:

1. Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83843

Abstract

ABSTRACT Temperature has a pleiotropic effect on Yersinia enterocolitica gene expression. Temperature-dependent phenotypes include the switching between two type III protein secretion systems, flagellum biosynthesis (≤30°C) and virulence plasmid-encoded Yop secretion (37°C). The mechanism by which temperature exerts this change in genetic programming is unclear; however, altered gene expression by temperature-dependent changes in DNA topology has been implicated. Here, we present evidence that the Y. enterocolitica virulence plasmid, pYV, undergoes a conformational transition between 30 and 37°C. Using a simplified two-dimensional, single-gel assay, we show that pYV contains multiple regions of intrinsic curvature, including virF , the positive activator of virulence genes. These bends are detectable at 30°C but melt at 37°C, the temperature at which the cells undergo phenotypic switching. We also show that pACYC184, a plasmid used as a reporter of temperature-induced changes in DNA supercoiling, has a single region of intrinsic bending detected by our assay. Topoisomers of pACYC184, with and without this bend, isolated from Y. enterocolitica were resolved by using chloroquine gels. The single bend has a dramatic influence on temperature-dependent DNA supercoiling. These data suggest that the Y. enterocolitica pYV plasmid may undergo a conformational change at the host temperature due to melting of DNA bends followed by compensatory adjustments in superhelical density. Hence, changes in DNA topology may be the temperature-sensing mechanism for virulence gene expression in Y. enterocolitica and other enteric pathogens.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3