Affiliation:
1. Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255
Abstract
ABSTRACT
The ClpYQ (HslUV) ATP-dependent protease of
Escherichia coli
consists of an ATPase subunit closely related to the Clp ATPases and a protease component related to those found in the eukaryotic proteasome. We found that this protease has a substrate specificity overlapping that of the Lon protease, another ATP-dependent protease in which a single subunit contains both the proteolytic active site and the ATPase. Lon is responsible for the degradation of the cell division inhibitor SulA;
lon
mutants are UV sensitive, due to the stabilization of SulA.
lon
mutants are also mucoid, due to the stabilization of another Lon substrate, the positive regulator of capsule transcription, RcsA. The overproduction of ClpYQ suppresses both of these phenotypes, and the suppression of UV sensitivity is accompanied by a restoration of the rapid degradation of SulA. Inactivation of the chromosomal copy of
clpY
or
clpQ
leads to further stabilization of SulA in a
lon
mutant but not in
lon
+
cells. While either
lon
,
lon clpY
, or
lon clpQ
mutants are UV sensitive at low temperatures, at elevated temperatures the
lon
mutant loses its UV sensitivity, while the double mutants do not. Therefore, the degradation of SulA by ClpYQ at elevated temperatures is sufficient to lead to UV resistance. Thus, a protease with a structure and an active site different from those of Lon is capable of recognizing and degrading two different Lon substrates and appears to act as a backup for Lon under certain conditions.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献