Molecular and functional analysis of the muscle-specific promoter region of the Duchenne muscular dystrophy gene.

Author:

Klamut H J,Gangopadhyay S B,Worton R G,Ray P N

Abstract

Duchenne muscular dystrophy (DMD) gene transcripts are most abundant in normal skeletal and cardiac muscle and accumulate as normal myoblasts differentiate into multinucleated myotubes. In this report we describe our initial studies aimed at defining the cis-acting sequences and trans-acting factors involved in the myogenic regulation of DMD gene transcription. A cosmid clone containing the first exon of the DMD gene has been isolated, and sequences lying upstream of exon 1 were analyzed for homologies to other muscle-specific gene promoters and for their ability to direct muscle-specific transcription of chimeric chloramphenicol acetyltransferase (CAT) gene constructs. The results indicate that the transcriptional start site for this gene lies 37 base pairs (bp) upstream of the 5' end of the published cDNA sequence and that 850 bp of upstream sequence can direct CAT gene expression in a muscle-specific manner. Sequence analysis indicates that in addition to an ATA and GC box, this region contains domains that have been implicated in the regulation of other muscle-specific genes: a CArG box at -91 bp; myocyte-specific enhancer-binding nuclear factor 1 binding site homologies at -58, -535, and -583 bp; and a muscle-CAAT consensus sequence at -394 bp relative to the cap site. Our observation that only 149 bp of upstream sequence is required for muscle-specific expression of a chimeric CAT gene construct further implicates the CArG and myocyte-specific enhancer-binding nuclear factor 1 binding homologies as important domains in the regulation of this gene. On the other hand, the unique profile of myogenic cell line-specific induction displayed by our DMD promoter-CAT gene constructs suggests that other as yet undefined cis-acting sequences and/or trans-acting factors may also be involved.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3