Expression of a gene family in the dimorphic fungus Mucor racemosus which exhibits striking similarity to human ras genes.

Author:

Casale W L,Mcconnell D G,Wang S Y,Lee Y J,Linz J E

Abstract

Sporulation, spore germination, and yeast-hypha dimorphism in the filamentous fungus Mucor racemosus provide useful model systems to study cell development in eucaryotic cells. Three RAS genes (MRAS1, MRAS2, and MRAS3) from M. racemosus have been cloned, and their nucleotide sequences have been determined. The predicted amino acid sequences and the sizes of the three MRAS proteins exhibit a high degree of similarity with other ras proteins, including that encoded by H-ras, which have been implicated in regulation of proliferation and development in eucaryotic cells by mediating signal transduction pathways. The MRAS proteins show conservation of functional domains proposed for ras proteins, including guanine nucleotide interaction domains, an effector domain, a binding epitope for neutralizing antibody Y13-259, and the COOH-terminal CAAX box, which is a site of thiocylation and membrane attachment. Amino acid sequences unique to each MRAS protein occur adjacent to the CAAX box, consistent with the location of the hypervariable region in other ras proteins. Northern (RNA) analysis was used to study expression of the three MRAS genes in relation to cell development. Gene-specific probes for two of these genes, MRAS1 and MRAS3, hybridized to different 1.3-kb mRNA transcripts. The accumulation of these transcripts depended on the developmental stage, and this pattern was different between the two MRAS genes. No transcript for MRAS2 was detected in the developmental stages examined. The unique patterns of MRAS transcript accumulation suggest that individual MRAS genes and proteins may play distinct roles in cell growth or development.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3