Parameters that govern the regulation of immunoglobulin delta heavy-chain gene expression.

Author:

Tisch R,Kondo N,Hozumi N

Abstract

The mu and delta immunoglobulin heavy-chain genes comprise a complex transcriptional unit in which a single mRNA precursor gives rise to mu- and delta-specific transcripts. During the immature B-cell stage, posttranscriptional processing events involving alternate splicing and cleavage-polyadenylation site selection give rise to mu- but not delta-encoding transcripts. In terminally differentiated B cells, delta mRNA is not synthesized because of a transcription termination event occurring upstream of the delta-gene locus. In an attempt to gain insight into the respective contributions of alternate splicing and cleavage-polyadenylation in the control of delta mRNA synthesis, we have constructed a set of plasmids in which membrane mu (mu m)-delta intergenic sequences containing the mu m poly(A) site but differing in splicing capacity were inserted in between a VH and delta gene. The mu m-delta insertion vectors were transfected into a B lymphoma line representative of an immature stage, and proximal mu m poly(A) site usage and delta mRNA synthesis were assessed. To determine unequivocally whether the mu m-delta intergenic region can regulate termination, the insertion vectors were also transfected into a B myeloma line, and transcription through the region was measured. In immature B-cell transfectants, splicing site selection was found to have a key role in determining poly(A) site utilization and concomitant delta mRNA expression. Mature delta mRNA synthesis was blocked by an upstream cleavage-polyadenylation event only when the proximal poly(A) site was associated with appropriate splicing signals. Furthermore, in vitro transcription assays revealed that the mu m-delta intergenic region is sufficient to regulate transcription termination within a 1,2430-base-pair region containing the mu m poly(A) site in myeloma transfectants. The mu m-delta insertion vectors provide an excellent model system for studying the regulatory aspects of this transcription termination event.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3