Regulation of Herpes Simplex Virus gB-Induced Cell-Cell Fusion by Mutant Forms of gH/gL in the Absence of gD and Cellular Receptors

Author:

Atanasiu Doina1,Cairns Tina M.1,Whitbeck J. Charles2,Saw Wan Ting1,Rao Samhita1,Eisenberg Roselyn J.2,Cohen Gary H.1

Affiliation:

1. Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

2. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Abstract

ABSTRACT Herpesvirus entry requires the viral glycoprotein triad of gB and gH/gL to carry out fusion between the virion envelope and a cellular membrane in order to release the nucleocapsid into the target cell. Herpes simplex virus (HSV) also requires glycoprotein gD to initiate the fusion cascade by binding a cell receptor such as nectin 1 or herpesvirus entry mediator (HVEM). While the structure of gB is that of a class III fusion protein, gH/gL has no features that resemble other viral fusion proteins. Instead, it is suggested that gH/gL acts as a regulator of gB. The crystal structure of HSV-2 gH/gL was obtained with a functional protein that had a deletion of 28 residues at the gH N terminus (gHΔ48/gL). Unexplainably, monoclonal antibodies (MAbs) with virus-neutralizing activity map to these residues. To reconcile these two disparate observations, we studied the ability of gHΔ48/gL to regulate fusion. Here, we show that the protein induces low (constitutive) levels of fusion by gB in the absence of gD and/or receptor. However, when gD and receptor are present, this mutant functions as well as does wild-type (wt) gH/gL for fusion. We propose that gHΔ48/gL has an intermediate structure on the pathway leading to full regulatory activation. We suggest that a key step in the pathway of fusion is the conversion of gH/gL to an activated state by receptor-bound gD; this activated gH/gL resembles gHΔ48/gL. IMPORTANCE Herpes simplex viruses (HSVs) cause many human diseases, from mild cold sores to lethal neonatal herpes. As an enveloped virus, HSV must fuse its membrane with a host membrane in order for replication to take place. The virus uses four glycoproteins for this process, gD, gB, and gH/gL, and either of two cell receptors, herpesvirus entry mediator (HVEM) and nectin 1. Although the virus can enter the cell by direct fusion at the plasma membrane or via endocytosis, the same four glycoproteins are involved. The absence of any of these proteins abolishes the entry process. Here, we show that a mutant form of gH/gL, gHΔ48/gL, can induce fusion of gB-expressing cells in the absence of gD and a gD receptor. Our study supports the concept that gB is the HSV fusogen and its activity is regulated by gH/gL.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3