Colocalization and Disposition of Cellulosomes in Clostridium clariflavum as Revealed by Correlative Superresolution Imaging

Author:

Artzi Lior1,Dadosh Tali2,Milrot Elad2,Moraïs Sarah1,Levin-Zaidman Smadar2,Morag Ely1,Bayer Edward A.1

Affiliation:

1. Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel

2. Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel

Abstract

ABSTRACT Cellulosomes are multienzyme complexes produced by anaerobic, cellulolytic bacteria for highly efficient breakdown of plant cell wall polysaccharides. Clostridium clariflavum is an anaerobic, thermophilic bacterium that produces the largest assembled cellulosome complex in nature to date, comprising three types of scaffoldins: a primary scaffoldin, ScaA; an adaptor scaffoldin, ScaB; and a cell surface anchoring scaffoldin, ScaC. This complex can contain 160 polysaccharide-degrading enzymes. In previous studies, we proposed potential types of cellulosome assemblies in C. clariflavum and demonstrated that these complexes are released into the extracellular medium. In the present study, we explored the disposition of the highly structured, four-tiered cell-anchored cellulosome complex of this bacterium. Four separate, integral cellulosome components were subjected to immunolabeling: ScaA, ScaB, ScaC, and the cellulosome’s most prominent enzyme, GH48. Imaging of the cells by correlating scanning electron microscopy and three-dimensional (3D) superresolution fluorescence microscopy revealed that some of the protuberance-like structures on the cell surface represent cellulosomes and that the components are highly colocalized and organized by a defined hierarchy on the cell surface. The display of the cellulosome on the cell surface was found to differ between cells grown on soluble or insoluble substrates. Cell growth on microcrystalline cellulose and wheat straw exhibited dramatic enhancement in the amount of cellulosomes displayed on the bacterial cell surface. IMPORTANCE Conversion of plant biomass into soluble sugars is of high interest for production of fermentable industrial materials, such as biofuels. Biofuels are a very attractive alternative to fossil fuels, both for recycling of agricultural wastes and as a source of sustainable energy. Cellulosomes are among the most efficient enzymatic degraders of biomass known to date, due to the incorporation of a multiplicity of enzymes into a potent, multifunctional nanomachine. The intimate association with the bacterial cell surface is inherent in its efficient action on lignocellulosic substrates, although this property has not been properly addressed experimentally. The dramatic increase in cellulosome performance on recalcitrant feedstocks is critical for the design of cost-effective processes for efficient biomass degradation.

Funder

US-Israel Binational Science Foundation

European Union

European Union Horizon 2020

Israel Science Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3