Landscape of Resistance-Nodulation-Cell Division (RND)-Type Efflux Pumps in Enterobacter cloacae Complex

Author:

Guérin François123,Lallement Claire1,Isnard Christophe12,Dhalluin Anne1,Cattoir Vincent123,Giard Jean-Christophe1

Affiliation:

1. Université de Caen Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, France

2. CHU de Caen, Service de Microbiologie, Caen, France

3. CNR de la Résistance aux Antibiotiques (Laboratoire Associé Entérocoques), Caen, France

Abstract

ABSTRACT In Gram-negative bacteria, the active efflux is an important mechanism of antimicrobial resistance, but little is known about the Enterobacter cloacae complex (ECC). It is mediated primarily by pumps belonging to the RND (resistance-nodulation-cell division) family, and only AcrB, part of the AcrAB-TolC tripartite system, was characterized in ECC. However, detailed genome sequence analysis of the strain E. cloacae subsp. cloacae ATCC 13047 revealed to us that 10 other genes putatively coded for RND-type transporters. We then characterized the role of all of these candidates by construction of corresponding deletion mutants, which were tested for their antimicrobial susceptibility to 36 compounds, their virulence in the invertebrate Galleria mellonella model of infection, and their ability to form biofilm. Only the Δ acrB mutant displayed significantly different phenotypes compared to that of the wild-type strain: 4- to 32-fold decrease of MICs of several antibiotics, antiseptics, and dyes, increased production of biofilm, and attenuated virulence in G. mellonella . In order to identify specific substrates of each pump, we individually expressed in trans all operons containing an RND pump-encoding gene into the Δ acrB hypersusceptible strain. We showed that three other RND-type efflux systems (ECL_00053-00055, ECL_01758-01759, and ECL_02124-02125) were able to partially restore the wild-type phenotype and to superadd to and even enlarge the broad range of antimicrobial resistance. This is the first global study assessing the role of all RND efflux pumps chromosomally encoded by the ECC, which confirms the major role of AcrB in both pathogenicity and resistance and the potential involvement of other RND-type members in acquired resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3