An Intranasally Delivered Toll-Like Receptor 7 Agonist Elicits Robust Systemic and Mucosal Responses to Norwalk Virus-Like Particles

Author:

Velasquez Lissette S.1,Hjelm Brooke E.23,Arntzen Charles J.12,Herbst-Kralovetz Melissa M.14

Affiliation:

1. Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona

2. School of Life Sciences, Arizona State University, Tempe, Arizona

3. Translational Genomics Research Institute, Phoenix, Arizona

4. Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona

Abstract

ABSTRACT Norwalk virus (NV) is an enteric pathogen from the genus Norovirus and a major cause of nonbacterial gastroenteritis in humans. NV virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered nasally; however, the correlates of immune protection are unknown, and codelivery with a safe and immunogenic mucosal adjuvant may enhance protective anti-NV immune responses. Resiquimod (R848), an imidazoquinoline-based Toll-like receptor 7 and/or 8 (TLR7/8) agonist, is being evaluated as an adjuvant in FDA-approved clinical vaccine trials. As such, we evaluated the adjuvant activity of two imidazoquinoline-based TLR7 and TLR7/8 agonists when codelivered intranasally with plant-derived NV VLPs. We also compared the activity of these agonists to the gold standard mucosal adjuvant, cholera toxin (CT). Our results indicate that codelivery with the TLR7 agonist, gardiquimod (GARD), induces NV VLP-specific serum IgG and IgG isotype responses and mucosal IgA responses in the gastrointestinal, respiratory, and reproductive tracts that are superior to those induced by R848 and comparable to those induced by the mucosal adjuvant CT. This study supports the continued investigation of GARD as a mucosal adjuvant for NV VLPs and possible use for other VLP-based vaccines for which immune responses at distal mucosal sites (e.g., respiratory and reproductive tracts) are desired.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3