Requirement of NifX and Other nif Proteins for In Vitro Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase

Author:

Shah Vinod K.12,Rangaraj Priya12,Chatterjee Ranjini12,Allen Ronda M.12,Roll Jon T.32,Roberts Gary P.32,Ludden Paul W.12

Affiliation:

1. Departments of Biochemistry1 and

2. Center for the Study of Nitrogen Fixation,2 College of Agricultural and Life Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53706

3. Bacteriology3 and

Abstract

ABSTRACT The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42.48 (Δ nifENX ΔvnfE ) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3