Detection of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli on Flies at Poultry Farms

Author:

Blaak Hetty1,Hamidjaja Raditijo A.1,van Hoek Angela H. A. M.1,de Heer Lianne1,de Roda Husman Ana Maria1,Schets Franciska M.1

Affiliation:

1. National Institute for Public Health and the Environment (RIVM), Laboratory for Zoonoses and Environmental Microbiology, BA Bilthoven, The Netherlands

Abstract

ABSTRACT In the Netherlands, extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli bacteria are highly prevalent in poultry, and chicken meat has been implicated as a source of ESBL-producing E. coli present in the human population. The current study describes the isolation of ESBL-producing E. coli from house flies and blow flies caught at two poultry farms, offering a potential alternative route of transmission of ESBL-producing E. coli from poultry to humans. Overall, 87 flies were analyzed in 19 pools. ESBL-producing E. coli bacteria were detected in two fly pools (10.5%): a pool of three blow flies from a broiler farm and a pool of eight house flies from a laying-hen farm. From each positive fly pool, six isolates were characterized and compared with isolates obtained from manure ( n = 53) sampled at both farms and rinse water ( n = 10) from the broiler farm. Among six fly isolates from the broiler farm, four different types were detected with respect to phylogenetic group, sequence type (ST), and ESBL genotype: A 0 /ST3519/SHV-12, A 1 /ST10/SHV-12, A 1 /ST58/SHV-12, and B1/ST448/CTX-M-1. These types, as well as six additional types, were also present in manure and/or rinse water at the same farm. At the laying-hen farm, all fly and manure isolates were identical, carrying bla TEM-52 in an A 1 /ST48 genetic background. The data imply that flies acquire ESBL-producing E. coli at poultry farms, warranting further evaluation of the contribution of flies to dissemination of ESBL-producing E. coli in the community.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3