Engineering the Genotype of Acinetobacter sp. Strain ADP1 To Enhance Biosynthesis of Cyanophycin

Author:

Elbahloul Yasser1,Steinbüchel Alexander1

Affiliation:

1. Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany

Abstract

ABSTRACT To study the importance of arginine provision and phosphate limitation for synthesis and accumulation of cyanophycin (CGP) in Acinetobacter sp. strain ADP1, genes encoding the putative arginine regulatory protein ( argR ) and the arginine succinyltransferase ( astA ) were inactivated, and the effects of these mutations on CGP synthesis were analyzed. The inactivation of these genes resulted in a 3.5- or 7-fold increase in CGP content, respectively, when the cells were grown on glutamate. Knockout mutations in both genes led to a better understanding of the effect of the addition of other substrates to arginine on CGP synthesis during growth of the cells of Acinetobacter sp. strain ADP1. Overexpression of ArgF (ornithine carbamoyltransferase), CarA-CarB (small and large subunits of carbamoylphosphate synthetase), and PepC (phosphoenolpyruvate carboxylase) triggered synthesis of CGP if amino acids were used as a carbon source whereas it was not triggered by gluconate or other sugars. Cells of Acinetobacter sp. strain ADP1, which is largely lacking genes for carbohydrate metabolism, showed a significant increase in CGP contents when grown on mineral medium supplemented with glutamate, aspartate, or arginine. The Acinetobacter sp. ΔastA (pYargF) strain is unable to utilize arginine but synthesizes more arginine, resulting in CGP contents as high as 30% and 25% of cell dry matter when grown on protamylasse or Luria-Bertani medium, respectively. This recombinant strain overcame the bottleneck of the costly arginine provision where it produces about 75% of the CGP obtained from the parent cells grown on mineral medium containing pure arginine as the sole source of carbon. Phosphate starvation is the only known trigger for CGP synthesis in this bacterium, which possesses the PhoB/PhoR phosphate regulon system. Overexpression of phoB caused an 8.6-fold increase in CGP content in comparison to the parent strain at a nonlimiting phosphate concentration.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3