Characterization of the Natural Population of Bartonella henselae by Multilocus Sequence Typing

Author:

Iredell J.1,Blanckenberg D.1,Arvand M.2,Grauling S.2,Feil E. J.3,Birtles R. J.4

Affiliation:

1. Centre for Infectious Diseases and Microbiology, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia

2. Hygiene-Institut, Universität Heidelberg, Heidelberg, Germany

3. Department of Biology and Biochemistry, University of Bath, Bath

4. Centre for Comparative Infectious Diseases, University of Liverpool, Leahurst, Neston, United Kingdom

Abstract

ABSTRACT Investigations of the population genetics of Bartonella henselae have demonstrated a high level of diversity among strains, and the delineation of isolates into one of two subtypes, type I (Houston) and type II (Marseille), represented by specific 16S ribosomal DNA (rDNA) sequences, has long been considered the most significant genotypic division within the species. This belief is challenged by recent work suggesting a role for horizontal gene exchange in generating intraspecies diversity. We attempted to resolve this issue and extend exploration of the population structure of B. henselae by using multilocus sequence typing (MLST) to examine the distribution of polymorphisms within nine different genes in a sample of 37 human and feline isolates. MLST distinguished seven sequence types (STs) that resolved into three distinct lineages, suggesting a clonal population structure for the species, and support for these divisions was obtained by macrorestriction analysis using pulsed-field gel electrophoresis. The distribution of STs among isolates recovered from human infections was not random, and such isolates were significantly more often associated with one particular ST, lending further support to the suggestion that specific genotypes contribute disproportionately to the disease burden in humans. All but one isolate lay on lineages that bore the representative strain of either the Houston or Marseille subtype. However, the distribution of the two 16S rDNA alleles among the isolates was not entirely congruent with their lineage allocations, indicating that this is not a sensitive marker of the clonal divisions within the species. The inheritances of several of the genes studied could not be reconciled with one another, providing further evidence of horizontal gene transfer among B. henselae strains and suggesting that recombination has a role in shaping the genetic character of bartonellae.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3