Prospective Study of the Performance of Vibrational Spectroscopies for Rapid Identification of Bacterial and Fungal Pathogens Recovered from Blood Cultures

Author:

Maquelin K.12,Kirschner C.3,Choo-Smith L.-P.1,Ngo-Thi N. A.3,van Vreeswijk T.1,Stämmler M.3,Endtz H. P.2,Bruining H. A.1,Naumann D.3,Puppels G. J.1

Affiliation:

1. Department of General Surgery 10M, Laboratory for Intensive Care Research and Optical Spectroscopy

2. Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands

3. Biophysical Structure Analyses, Robert Koch Institute, D-13353 Berlin, Germany

Abstract

ABSTRACT Rapid identification of microbial pathogens reduces infection-related morbidity and mortality of hospitalized patients. Raman spectra and Fourier transform infrared (IR) spectra constitute highly specific spectroscopic fingerprints of microorganisms by which they can be identified. Little biomass is required, so that spectra of microcolonies can be obtained. A prospective clinical study was carried out in which the causative pathogens of bloodstream infections in hospitalized patients were identified. Reference libraries of Raman and IR spectra of bacterial and yeast pathogens highly prevalent in bloodstream infections were created. They were used to develop identification models based on linear discriminant analysis and artificial neural networks. These models were tested by carrying out vibrational spectroscopic identification in parallel with routine diagnostic phenotypic identification. Whereas routine identification has a typical turnaround time of 1 to 2 days, Raman and IR spectra of microcolonies were collected 6 to 8 h after microbial growth was detected by an automated blood culture system. One hundred fifteen samples were analyzed by Raman spectroscopy, of which 109 contained bacteria and 6 contained yeasts. One hundred twenty-one samples were analyzed by IR spectroscopy. Of these, 114 yielded bacteria and 7 were positive for yeasts. High identification accuracy was achieved in both the Raman (92.2%, 106 of 115) and IR (98.3%, 119 of 121) studies. Vibrational spectroscopic techniques enable simple, rapid, and accurate microbial identification. These advantages can be easily transferred to other applications in diagnostic microbiology, e.g., to accelerate identification of fastidious microorganisms.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3