Neutralizing Anti-gH Antibody of Varicella-Zoster Virus Modulates Distribution of gH and Induces Gene Regulation, Mimicking Latency

Author:

Shiraki Kimiyasu1,Daikoku Tohru1,Takemoto Masaya1,Yoshida Yoshihiro1,Suzuki Kazuhiro2,Akahori Yasushi2,Okuno Toshiomi3,Kurosawa Yoshikazu2,Asano Yoshizo4

Affiliation:

1. Department of Virology, University of Toyama, Toyama, Japan

2. Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan

3. Department of Microbiology, Hyogo College of Medicine, Hyogo, Japan

4. Department of Pediatrics, School of Medicine, Fujita Health University, Aichi, Japan

Abstract

ABSTRACT The anti-glycoprotein H (gH) monoclonal antibody (anti-gH-MAb) that neutralizes varicella-zoster virus (VZV) inhibited cell-to-cell infection, resulting in a single infected cell without apoptosis or necrosis, and the number of infectious cells in cultures treated with anti-gH-MAb declined to undetectable levels in 7 to 10 days. Anti-gH-MAb modulated the wide cytoplasmic distribution of gH colocalized with glycoprotein E (gE) to the cytoplasmic compartment with endoplasmic reticulum (ER) and Golgi markers near the nucleus, while gE retained its cytoplasmic distribution. Thus, the disintegrated distribution of gH and gE caused the loss of cellular infectivity. After 4 weeks of treatment with anti-gH-MAb, no infectious virus was recovered, even after cultivation without anti-gH-MAb for another 8 weeks or various other treatments. Cells were infected with Oka varicella vaccine expressing hepatitis B surface antigen (ROka) and treated with anti-gH-MAb for 4 weeks, and ROka was recovered from the quiescently infected cells by superinfection with the parent Oka vaccine. Among the genes 21, 29, 62, 63, and 66, transcripts of gene 63 were the most frequently detected, and products from the genes 63 and 62, but not gE, were detected mainly in the cytoplasm of quiescently infected cells, in contrast to their nuclear localization in lytically infected cells. The patterns of transcripts and products from the quiescently infected cells were similar to those of latent VZV in human ganglia. Thus, anti-gH-MAb treatment resulted in the antigenic modulation and dormancy of infectivity of VZV. Antigenic modulation by anti-gH-MAb illuminates a new aspect in pathogenesis in VZV infection and the gene regulation of VZV during latency in human ganglia.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3