Isolation and characterization of the constitutive acyl carrier protein from Rhizobium meliloti

Author:

Platt M W1,Miller K J1,Lane W S1,Kennedy E P1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

Rhizobium species produce an inducible acyl carrier protein (ACP), encoded by the nodF gene, that somehow functions in an exchange of cell signals between bacteria and specific plant hosts, leading to nodulation of plant roots and symbiotic nitrogen fixation, as well as a constitutive ACP needed for the synthesis of essential cell lipids. The periplasmic cyclic glucans of Rhizobium spp. are also involved in specific rhizobium-plant interaction. These glucans are strongly similar to the periplasmic membrane-derived oligosaccharides (MDO) of Escherichia coli. E. coli ACP is an essential component of a membrane-bound transglucosylase needed for the biosynthesis of MDO, raising the possibility that either or both of the rhizobial ACPs might have a similar function. We have now isolated the constitutive ACP of R. meliloti and determined its primary structure. We have also examined its function, together with those of ACPs from E. coli, Rhodobacter sphaeroides, and spinach, in the MDO transglucosylase system and as substrate for the E. coli ACP acylase enzyme. All four ACPs act as acceptors of acyl residues, but only the E. coli ACP functions in the transglucosylase system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3