Affiliation:
1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.
Abstract
Rhizobium species produce an inducible acyl carrier protein (ACP), encoded by the nodF gene, that somehow functions in an exchange of cell signals between bacteria and specific plant hosts, leading to nodulation of plant roots and symbiotic nitrogen fixation, as well as a constitutive ACP needed for the synthesis of essential cell lipids. The periplasmic cyclic glucans of Rhizobium spp. are also involved in specific rhizobium-plant interaction. These glucans are strongly similar to the periplasmic membrane-derived oligosaccharides (MDO) of Escherichia coli. E. coli ACP is an essential component of a membrane-bound transglucosylase needed for the biosynthesis of MDO, raising the possibility that either or both of the rhizobial ACPs might have a similar function. We have now isolated the constitutive ACP of R. meliloti and determined its primary structure. We have also examined its function, together with those of ACPs from E. coli, Rhodobacter sphaeroides, and spinach, in the MDO transglucosylase system and as substrate for the E. coli ACP acylase enzyme. All four ACPs act as acceptors of acyl residues, but only the E. coli ACP functions in the transglucosylase system.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献