Affiliation:
1. Departamento de Genética y Fisiología Molecular, Universidad Nacional Autónoma de México, Morelos, Mexico.
Abstract
The infection of target cells by most animal rotavirus strains requires the presence of sialic acids (SAs) on the cell surface. We recently isolated variants from simian rotavirus RRV whose infectivity is no longer dependent on SAs and showed that the mutant phenotype segregates with the gene coding for VP4, one of the two surface proteins of rotaviruses (the other one being VP7). The nucleotide sequence of the VP4 gene of four independently isolated variants showed three amino acid changes, at positions 37 (Leu to Pro), 187 (Lys to Arg), and 267 (Tyr to Cys), in all mutant VP4 proteins compared with RRV VP4. The characterization of revertant viruses from two independent mutants showed that the arginine residue at position 187 changed back to lysine, indicating that this amino acid is involved in the determination of the mutant phenotype. Surprisingly, sequence analysis of reassortant virus DS1XRRV, which depends on SAs to infect the cell, showed that its VP4 gene is identical to the VP4 gene of the variants. Since the only difference between DS1XRRV and the RRV variants is the parental origin of the VP7 gene (human rotavirus DS1 in the reassortant), these findings suggest that the receptor-binding specificity of rotaviruses, via VP4, may be influenced by the associated VP7 protein.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献