Coaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions

Author:

Kolenbrander P E,Andersen R N,Holdeman L V

Abstract

Seventy-three freshly isolated oral strains representing 10 Bacteroides spp. were tested for their ability to coaggregate with other oral gram-negative and gram-positive bacteria. None coaggregated with any of the gram-negative strains tested, which included Capnocytophaga gingivalis, C. ochracea, C. sputigena, and Actinobacillus actinomycetemcomitans. Strains of Bacteroides buccae, B. melaninogenicus, B. oralis, and B. gingivalis failed to coaggregate with any of the gram-positive strains tested. However, six Bacteroides spp. coaggregated with one or more species of gram-positive bacteria. Most isolates of B. buccalis, B. denticola, B. intermedius, B. loescheii, B. oris, and B. veroralis coaggregated with strains of Actinomyces israelii, A. viscosus, A. naeslundii, A. odontolyticus, Rothia dentocariosa, or Streptococcus sanguis. The strongest coaggregations involved B. denticola, B. loescheii, or B. oris; 22 of 25 strains coaggregated with A. israelii. Only B. loescheii interacted with certain strains of S. sanguis; these coaggregations were lactose inhibitable and were like coaggregations between A. viscosus and the same strains of S. sanguis. In fact, B. loescheii and A. viscosus were competitors for binding to S. sanguis. Many bacteroides also acted as coaggregation bridges by mediating coaggregations between two noncoaggregating cell types (e.g., S. sanguis and A. israelii). Evidence for binding-site competition and coaggregation bridging involving noncoaggregating cell types from three different genera provides support for the hypothesis that these intergeneric cell-to-cell interactions have an active role in bacterial colonization of the oral cavity.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference34 articles.

1. Microbial ecology of the oral cavity;Bowden G. H. W.;Adv. Microbial Ecol.,1979

2. Cisar J. O. M. J. Brennan and A. L. Sandberg. 1985. Lectin-specific interaction of Actinomyces fimbriae with oral streptococci p. 159-163. In S. E. Mergenhagen and B. R. Rosan (ed.) Molecular basis for oral microbial adhesion. American Society for Microbiology Washington D.C.

3. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii;Cisar J. O.;Infect. Immun.,1979

4. The microbiota of the gingival crevice area of man. II. The predominant cultivable organisms;Gibbons R. J.;Arch. Oral Biol.,1963

5. Holdeman L. V. E. P. Cato and W. E. C. Moore (ed.). 1977. Anaerobe laboratory manual 4th ed. Virginia Polytechnic Institute and State University Blacksburg.

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3