Selective Signaling by Akt2 Promotes Bone Morphogenetic Protein 2-Mediated Osteoblast Differentiation

Author:

Mukherjee Aditi1,Wilson Elizabeth M.1,Rotwein Peter1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098

Abstract

ABSTRACT Mesenchymal stem cells are essential for repair of bone and other supporting tissues. Bone morphogenetic proteins (BMPs) promote commitment of these progenitors toward an osteoblast fate via functional interactions with osteogenic transcription factors, including Dlx3, Dlx5, and Runx2, and also can direct their differentiation into bone-forming cells. BMP-2-stimulated osteoblast differentiation additionally requires continual signaling from insulin-like growth factor (IGF)-activated pathways. Here we identify Akt2 as a critical mediator of IGF-regulated osteogenesis. Targeted knockdown of Akt2 in mouse primary bone marrow stromal cells or in a mesenchymal stem cell line, or genetic knockout of Akt2, did not interfere with BMP-2-mediated signaling but resulted in inhibition of osteoblast differentiation at an early step that preceded production of Runx2. In contrast, Akt1-deficient cells differentiated normally. Complete biochemical and morphological osteoblast differentiation was restored in cells lacking Akt2 by adenoviral delivery of Runx2 or by a recombinant lentivirus encoding wild-type Akt2. In contrast, lentiviral Akt1 was ineffective. Taken together, these observations define a specific role for Akt2 as a gatekeeper of osteogenic differentiation through regulation of Runx2 gene expression and indicate that the closely related Akt1 and Akt2 exert distinct effects on the differentiation of mesenchymal precursors.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3