A Combination Antibiogram Evaluation for Pseudomonas aeruginosa in Respiratory and Blood Sources from Intensive Care Unit (ICU) and Non-ICU Settings in U.S. Hospitals

Author:

Puzniak Laura,DePestel Daryl D.,Srinivasan Arjun,Ye Gang,Murray John,Merchant Sanjay,DeRyke C. Andrew,Gupta Vikas

Abstract

ABSTRACT Pseudomonas aeruginosa is an important pathogen associated with significant morbidity and mortality. U.S. guidelines for the treatment of hospital-acquired and ventilator-associated pneumonia recommend the use of two antipseudomonal drugs for high-risk patients to ensure that ≥95% of patients receive active empirical therapy. We evaluated the utility of combination antibiograms in identifying optimal anti-P. aeruginosa drug regimens. We conducted a retrospective cross-sectional analysis of the antimicrobial susceptibility of all nonduplicate P. aeruginosa blood and respiratory isolates collected between 1 October 2016 and 30 September 2017 from 304 U.S. hospitals in the BD Insights Research Database. Combination antibiograms were used to determine in vitro rates of susceptibility to potential anti-P. aeruginosa combination regimens consisting of a backbone antibiotic (an extended-spectrum cephalosporin, carbapenem, or piperacillin-tazobactam) plus an aminoglycoside or fluoroquinolone. Single-agent susceptibility rates for the 11,701 nonduplicate P. aeruginosa isolates ranged from 72.7% for fluoroquinolones to 85.0% for piperacillin-tazobactam. Susceptibility rates were higher for blood isolates than for respiratory isolates (P < 0.05). Antibiotic combinations resulted in increased susceptibility rates but did not achieve the goal of 95% antibiotic coverage. Adding an aminoglycoside resulted in higher susceptibility rates than adding a fluoroquinolone; piperacillin-tazobactam plus an aminoglycoside resulted in the highest susceptibility rate (93.3%). Intensive care unit (ICU) isolates generally had lower susceptibility rates than non-ICU isolates. Commonly used antipseudomonal drugs, either alone or in combination, did not achieve 95% coverage against U.S. hospital P. aeruginosa isolates, suggesting that new drugs are needed to attain this goal. Local institutional use of combination antibiograms has the potential to optimize empirical therapy of infections caused by difficult-to-treat pathogens.

Funder

Merck & Co., Inc.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3