Silencing of Wnt Signaling and Activation of Multiple Metabolic Pathways in Response to Thyroid Hormone-Stimulated Cell Proliferation

Author:

Miller Lance D.1,Park Kyung Soo2,Guo Qingbin M.1,Alkharouf Nawal W.1,Malek Renae L.3,Lee Norman H.3,Liu Edison T.1,Cheng Sheue-yann2

Affiliation:

1. Section of Molecular Signaling and Oncogenesis, Medicine Branch, Division of Clinical Sciences, 1 and

2. Laboratory of Molecular Biology, 2 National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and

3. The Institute for Genomic Research, Department of Functional Genomics, Rockville, Maryland 208503

Abstract

ABSTRACT To investigate the transcriptional program underlying thyroid hormone (T3)-induced cell proliferation, cDNA microarrays were used to survey the temporal expression profiles of 4,400 genes. Of 358 responsive genes identified, 88% had not previously been reported to be transcriptionally or functionally modulated by T3. Partitioning the genes into functional classes revealed the activation of multiple pathways, including glucose metabolism, biosynthesis, transcriptional regulation, protein degradation, and detoxification in T3-induced cell proliferation. Clustering the genes by temporal expression patterns provided further insight into the dynamics of T3 response pathways. Of particular significance was the finding that T3 rapidly repressed the expression of key regulators of the Wnt signaling pathway and suppressed the transcriptional downstream elements of the β-catenin–T-cell factor complex. This was confirmed biochemically, as β-catenin protein levels also decreased, leading to a decrease in the transcriptional activity of a β-catenin-responsive promoter. These results indicate that T3-induced cell proliferation is accompanied by a complex coordinated transcriptional reprogramming of many genes in different pathways and that early silencing of the Wnt pathway may be critical to this event.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3