Diversity and Biocatalytic Potential of Epoxide Hydrolases Identified by Genome Analysis

Author:

van Loo Bert1,Kingma Jaap1,Arand Michael2,Wubbolts Marcel G.3,Janssen Dick B.1

Affiliation:

1. Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

2. Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

3. DSM Pharma Chemicals, Advanced Synthesis, Catalysis & Development, DSM Research, P.O. Box 18, 6160 MD Geleen, The Netherlands

Abstract

ABSTRACT Epoxide hydrolases play an important role in the biodegradation of organic compounds and are potentially useful in enantioselective biocatalysis. An analysis of various genomic databases revealed that about 20% of sequenced organisms contain one or more putative epoxide hydrolase genes. They were found in all domains of life, and many fungi and actinobacteria contain several putative epoxide hydrolase-encoding genes. Multiple sequence alignments of epoxide hydrolases with other known and putative α/β-hydrolase fold enzymes that possess a nucleophilic aspartate revealed that these enzymes can be classified into eight phylogenetic groups that all contain putative epoxide hydrolases. To determine their catalytic activities, 10 putative bacterial epoxide hydrolase genes and 2 known bacterial epoxide hydrolase genes were cloned and overexpressed in Escherichia coli . The production of active enzyme was strongly improved by fusion to the maltose binding protein (MalE), which prevented inclusion body formation and facilitated protein purification. Eight of the 12 fusion proteins were active toward one or more of the 21 epoxides that were tested, and they converted both terminal and nonterminal epoxides. Four of the new epoxide hydrolases showed an uncommon enantiopreference for meso -epoxides and/or terminal aromatic epoxides, which made them suitable for the production of enantiopure ( S , S )-diols and ( R )-epoxides. The results show that the expression of epoxide hydrolase genes that are detected by analyses of genomic databases is a useful strategy for obtaining new biocatalysts.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3