High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane

Author:

Labischinski H,Barnickel G,Bradaczek H,Naumann D,Rietschel E T,Giesbrecht P

Abstract

The conformational properties of the isolated S form of Salmonella sp. lipopolysaccharide (LPS), of Re mutant LPS, and of free lipid A were investigated by using X-ray diffraction and conformational energy calculations. The data obtained showed that LPS in a dried, in a hydrated, and probably also in an aqueous dispersion state is capable of forming bilayered lamellar arrangements similar to phospholipids. From the bilayer packing periodicities, a geometrical model of the extensions of the LPS regions lipid A, 2-keto-3-deoxyoctulosonic acid, and O-specific chain along the membrane normal could be calculated. Furthermore, the lipid A component was found to assume a remarkably high ordered conformation: its fatty acid chains were tightly packed in a dense hexagonal lattice with a center-to-center distance of 0.49 nm. The hydrophilic backbone of lipid A showed a strong tendency to form domains in the membrane, resulting in a more or less parallel arrangement of lipid A units. According to model calculations, the hydrophilic backbone of lipid A appears to be oriented approximately 45 degrees to the membrane surface, which would lead to a shed roof-like appearance of the surface structure in the indentations of which the 2-keto-3-deoxyoctulosonic acid moiety would fit. In contrast, the O-specific chains assume a low ordered, heavily coiled conformation. Comparison of these structural properties with those known for natural phospholipids in biological membranes indicates that the high state of order of the lipid A portion of LPS might be an important factor in the structural role and permeation barrier functions of LPS in the outer membrane of gram-negative bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3