The p110α Isoform of Phosphatidylinositol 3-Kinase Is Essential for Polyomavirus Middle T Antigen-Mediated Transformation

Author:

Utermark Tamara12,Schaffhausen Brian S.3,Roberts Thomas M.12,Zhao Jean J.14

Affiliation:

1. Department of Cancer Biology, Dana-Farber Cancer Institute

2. Departments of Pathology

3. Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111

4. Surgery, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT Middle T antigen (MT) of polyomavirus is known to play an important role in virus-mediated cellular transformation. While MT has been extensively examined in spontaneously immortalized rodent fibroblasts, its interactions with cells of other types and species are less well understood. We have undertaken a cross-species and cross-cell-type comparison of MT-induced transformation in cells with genetically defined backgrounds. We tested the transforming abilities of a panel of MT mutants, Y250F, Y315F, and Y322F, that are selectively mutated in the binding sites for the principal effectors of MT—Src homology 2 domain-containing transforming protein, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ, respectively—in fibroblasts and epithelial cells of murine or human origin. We found that the Y315F mutation disabled the ability of MT to induce transformation in all cell types and species tested. While Y315F also failed to activate the PI3K pathway in these cells, genetic evidence has indicated Y315 may make other contributions to transformation. To confirm the role of PI3K, the PIK3CA gene, encoding p110α, the prime effector of PI3K signaling downstream from activated growth factor receptors, was genetically ablated. This abolished the transforming activity of MT, demonstrating the essential role for this PI3K isoform in MT-mediated transformation. The Y250F mutant was able to transform the human, but not the murine, cells that were examined. Interestingly, this mutant fully activates the PI3K pathway in human cells but activated PI3K signaling poorly in the murine cells used in the study. This again points to the importance of PI3K activation for transformation and suggests that the mechanism by which MT activates the PI3K pathway differs in different species.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3