Electrical Phenotypes of Calcium Transport Mutant Strains of a Filamentous Fungus, Neurospora crassa

Author:

Hamam Ahmed1,Lew Roger R.1

Affiliation:

1. York University, Biology Department, Toronto, Ontario, Canada

Abstract

ABSTRACT We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters—a mechanosensitive channel homolog ( MscS ), a Ca 2+ /H + exchange protein ( cax ), and Ca 2+ -ATPases ( nca-1 , nca-2 , nca-3 )—as well as those of double mutants (the nca-2 cax , nca-2 nca-3 , and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2 -containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H + -ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca 2+ levels, indicative of lesions in Ca 2+ homeostasis. However, the net Ca 2+ effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca 2+ -selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca 2+ signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca 2+ ] was elevated. Thus, although Ca 2+ homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654–661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H + -ATPase activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3